lunes, 15 de febrero de 2010

Funcionamiento y funciones del Transistor

Transistores
En la sección diodos vimos la unión de dos cristales, P y N, debidamente dopados. Ahora vamos a investigar que ocurre, desde el punto de vista eléctrico, si unimos dos diodos entre si, es decir si unimos un conjunto P-N con otro N-P, dorso contra dorso; o bien si unimos un N-P con otro P-N, en las mismas condiciones.
Debido a que las dos secciones centrales poseen el mismo dopado, se confunden entre si, de modo que nos queda una unión real que equivale, en el primer caso, a P-N-P y en el segundo a N-P-N.


En 1949, alguien realizando pruebas (estas pruebas se realizarán en artículos especiales) se dio cuenta de que se hallaba ante un nuevo dispositivo semiconductor de enormes posibilidades, y lo bautizó con el nombre de transistor sacado de transfer resistor (resistencia de transferencia, en inglés) porque el transistor ofrece una resistencia variable.

Teoría del Transistor
A vista de esa prueba realizada este dispositivo ha de tener tres electrodos o bornes, uno por cada uno de los cristales de que se compone. Al cristal que recibe la corriente, el primero de los tres, se distingue con el nombre de emisor; el cristal del centro como base, y al cristal de salida de la corriente, colector. Entonces, en un transistor de tipo NPN, la primera N será el emisor, P será la base, y la otra N, el colector. Estos nombres se suelen abreviar con las letras E, B y C respectivamente.


Para comprender bien el funcionamiento del transistor debemos recordar la teoría atómica, donde el cristal N es un cristal que tiene exceso de electrones, y el cristal P, es un cristal con exceso de huecos. Por ejemplo un transistor de tipo NPN, siguiendo la imagen en la que una fuente de alimentación (B) provee de corriente al emisor, conectado al polo negativo en el cristal N, negativo también. En estas condiciones se forman como unas barreras Z1 y Z2 en las uniones con el cristal P de base, que impiden el paso de la corriente. La base está llena de huecos que pasan a ser ocupados por los electrones más próximos de los cristales contiguos, formándose estas barreras de átomos en equilibrio que impide el paso de la corriente (salvo una muy débil corriente de fuga de escasísimo valor).
Transistor NPN 







Circuito elemental de un transistor.

Pero si se polariza la fuente del mismo signo que ella, es decir, con una tensión positiva respecto al emisor, lo que se llama en sentido contrario, la barrera Z1 desaparece porque el potencial positivo aplicado a la base repele los huecos hacia los cristales N y penetran en la zona de resistencia. Los electrones libres del emisor la atraviesan siendo atraídos por los potenciales positivos de la base y del colector. Dado que el potencial positivo del colector es mucho más elevado que el de la base, los electrones se sentirán más atraídos por el primero, por lo que se obtendrá una elevada corriente del colector (que abreviaremos IC) y una pequeña corriente de base (IB). La corriente del emisor (IE) será por tanto igual a la suma de la corriente de colector y la corriente de base, tal como se deduce de las leyes de Kirchhoff. Es decir:
IE = IC + IB




De esto se deduce que la corriente que sale por el colector no va incrementada con la corriente de base. De hecho, la corriente que pasa por emisor y que se designa IE se compone de la corriente de la base y del colector que luego circularán en diferente sentido. En la imagen vemos un esquema de circuito elemental de un transistor en el que se designa también el nombre de las tensiones (V). Así tenemos que VBE es la tensión base-emisor, VCE es la tensión colector-emisor. Como puede verse, en el emisor las corrientes de base colector se suman, tal como dice la ley de Kirchhoff.

Funcionamiento del Transistor
Para interpretar los esquemas es muy importante saber con detalle el funcionamiento del transistor. Para ello es conveniente
Comprobación del funcionamiento de un transistor.
 ver como se comporta de acuerdo con la corriente de base, que es la principal particularidad de este dispositivo electrónico. Lo analizaremos mejor por medio de imágenes.


En la imagen seguimos con un transistor de tipo NPN, pero sería lo mismo hacer la prueba con el otro tipo de transistor,

el PNP, pero habría que hacerlo con las conexiones invertidas para ese caso. En esa imagen va sernos de gran utilidad el potenciómetro (P) que se aprecia en la parte baja y también el miliamperímetro (A) que nos indicará el valor de la corriente que circulará por el colector.

Aseguramos de que hemos hecho bien las conexiones, es decir, el negativo de la batería al cristal N emisor, el positivo al colector; y en lo que respecta a la base con su conexión positiva por ser cristal P. En esa imagen que vimos tenemos el potenciómetro a cero, de modo que su alta resistencia impide el paso de la corriente a la base y el transistor no conduce corriente.

A un pequeño paso de la corriente por la base se corresponde un gran paso entre emisor y colector.
















Cuando accionamos el cursor del potenciómetro y disminuimos la resistencia del circuito, como se ve en la siguiente imagen; dando paso a una intensidad de corriente (IB) de, por ejemplo 0,1 mA, la corriente pasa a alimentar la base y observamos que el miliamperímetro conectado en serie con el colector mueve su aguja y causa un paso de corriente de 10 mA. Si accionamos el potenciómetro de modo que pase la máxima corriente posible, la aguja del miliamperímetro también delata el aumento del paso de corriente de colector. Entonces deducimos que la corriente de base, cuanto más intensa es, más intensa permite que sea la corriente del colector. De ahí sacamos una importante característica del transistor, y es que se puede regular la corriente de paso por el mismo, por el hecho de establecer una determinada corriente de base. En el ejemplo anterior vimos que con una corriente de 0,1 mA puede controlarse otra corriente de 10 mA, es decir, una corriente 10/0,1 = 100 veces superior.


Otra condición de la mayor importancia para conocer para conocer el funcionamiento del transistor son las siguientes reglas que hemos de considerar siempre cuando se trata de interpretar su funcionamiento.

En estos casos:
- Al emisor deberá aplicársele una polaridad del mismo signo que el cristal que los constituye. Si el cristal es del tipo P se le deberá aplicar polaridad positiva; y si es del tipo N se le deberá aplicar polaridad negativa.


- A la base se le aplicará igualmente una polaridad del mismo signo que el cristal que lo constituye. Si es un cristal N se le aplicará polaridad negativa; y si es un cristal P deberá ser positiva.


- Al colector se le aplicará una polaridad opuesta al cristal que lo constituye. Si es un cristal P se le deberá aplicar la polaridad negativa; y si es de cristal N deberá aplicársele la polaridad positiva.

Estas condiciones hay que tenerlas muy en cuenta cada vez que tenga que conectar un transistor en un circuito.

Funciones principales del Transistor
Con todo lo dicho hasta aquí ya tenemos una idea general del funcionamiento de este dispositivo. Ahora hemos de ver para qué sirve, que es el objetivo de este estudio electrónico. A continuación pondremos una lista de funciones de transistores, y luego veremos una de ellas a fondo, la que se considera de mayor importancia en este campo.

Funciones o tipos:
- Amplificadores.
- Interruptores o relés.
- Unipolares (JFET y MOSFET), se utilizan en circuitos integrados.
- Darlington

El tipo o función del transistor que vamos a destacar (por el momento) será como amplificador, hay que aclarar que es eso de amplificar en electrónica, por lo cual lo definiremos. Podríamos decir que amplificar es incrementar una magnitud, y que amplificación es, por lo tanto, el proceso de incrementar la intensidad de una señal. Un amplificador es un dispositivo en el que una débil corriente producida por una fuente provoca una fuerte corriente en otra fuente.


Una amplificación es un aumento de magnitud y no, un aumento de energía; es decir, no es que de un amplificador salga más de lo que entra y por lo tanto haya una creación de algo; lo que ocurre es que sale agrandado, es decir, amplificado. Para mayor claridad pasemos a definir bien lo que se define por 'aumento de magnitud'. Si dividimos la corriente, la tensión o la potencia de salida por el valor correspondiente de entrada nos quedará un resultado que es lo que se llama 'ganancia' del amplificador en términos electrónicos. Una potencia de salida de, por ejemplo, 1 W que resulta de una potencia de entrada de 1 mW significará una ganancia del amplificador de 1000 W (1/0,001= 1000).


No hay comentarios:

Publicar un comentario